Two Dimensional
 Conversions

G

Area of Regular Polygons

The Metric System: 2 Dimensional Conversions

Example

Perform the following metric conversion.

$7135 \mathrm{~cm}^{2}=?$ dam 2

$\mathrm{km}^{2} \mathrm{hm}^{2} \overbrace{\text { dam }}{ }^{2} \mathrm{~m}^{2} \mathrm{dm}^{2}$
$7135 \mathrm{~cm}^{2}=\underline{0.007135} \mathrm{dam}^{2}$

The Area of a Regular Polygon

Let's do a quick recap of the 'Apothem'

" a " is the length of the apothem

Regular Hexagon

" a " is the length of the apothem

The Area of a Regular Polygon

In order to calculate the area of any of the above regular polygons, we will use the formula:

$$
A=\frac{(P)(a)}{2}
$$

" A " is the area of the regular polygon
" P " is the perimeter of the regular
polygon
" a " is the apothem of the regular polygon

Example l: Find the Area

$$
\begin{aligned}
& A=\frac{(P)(a)}{2} \\
& A=\frac{(100 \mathrm{~cm})(14 \mathrm{~cm})}{2}
\end{aligned}
$$

Note that $(\mathrm{cm})(\mathrm{cm})=\mathrm{cm}^{2}$

$$
\begin{aligned}
& A=\frac{1400 \mathrm{~cm}^{2}}{2} \\
& A=700 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 2: Solve for X (Perimeter)

Let's try a different type of question where we are given the area of a regular polygon and we want to calculate the perimeter.

$$
\text { Area }=32.4 \mathrm{~cm}^{2}
$$

Example 2: Continued

$$
\begin{aligned}
A & =\frac{(P)(a)}{2} \\
\frac{32.4 \mathrm{~cm}^{2}}{1} & =\frac{(P)(3 \mathrm{~cm})}{2} \\
(2)\left(32.4 \mathrm{~cm}^{2}\right) & =(1)(P)(3 \mathrm{~cm}) \\
64.8 \mathrm{~cm}^{2} & =(3 \mathrm{~cm})(P) \\
\frac{64.8 \mathrm{~cm}^{2}}{3 \mathrm{~cm}} & =\frac{(3 \mathrm{~cm})(P)}{3 \mathrm{~cm}} \\
21.6 \mathrm{~cm} & =\frac{(3 \mathrm{~cm})(P)}{3 \mathrm{em}}
\end{aligned}
$$

Remember that $\frac{\mathrm{cm}^{2}}{\mathrm{~cm}}=\mathrm{cm}$ and that $\frac{\mathrm{cm}}{\mathrm{cm}}=1$

$$
P=21.6 \mathrm{~cm}
$$

Homework:

Math 3000: Pages 159-160 \#1-8
Assignment: MHS

