Surface Area of Pyramids

Pyramids

We have three types of pyramids:

Triangular Based Pyramids
Rectangular Based Pyramids
and

Square Based Pyramids

Nets: Triangular Based Pyramid

If we have a triangular pyramid, then the base is a triangle and the lateral faces are triangles.

Nets: Square Based Pyramids

If the pyramid has a square base, then our net with have a square with four congruent triangles attached to each side.

Nets: Rectangular Based Pyramids

Rectangular pyramids are made up of a rectangle and 4 triangles as well. However, all 4 triangles are not congruent. Only the two opposite triangles will be congruent.

Example 1 - Square Based Pyramid

Let's draw the net of this pyramid.

Example 1 - Continued

Now we can find the area of each face. Start
by finding the area of the square in the center.

$$
\begin{aligned}
& A=s^{2} \\
& A=(30 \mathrm{~cm})^{2} \\
& A=900 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 1 - Continued

The four triangles are exactly the same. So we can find the area of one triangle and then multiply the area by 4 to represent the area of all 4 lateral faces.

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2}(30 \mathrm{~cm})(20 \mathrm{~cm}) \\
& A=\frac{1}{2}\left(600 \mathrm{~cm}^{2}\right) \\
& A=300 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 1 - Continued

Now we take the area and quadruple it. $300 \mathrm{~cm}^{2} \times 4=1200 \mathrm{~cm}^{2}$. This $1200 \mathrm{~cm}^{2}$ represents all 4 triangles.

To get the total surface area of the square pyramid we will add the area of the square with the area of the triangles.

$$
900 \mathrm{~cm}^{2}+1200 \mathrm{~cm}^{2}=2100 \mathrm{~cm}^{2}
$$

Example 2 - Triangular Based Pyramid

Example 2 - Continued

Now we can find the area of the base.

$$
\begin{aligned}
& A=\frac{1}{2} \mathrm{bh} \\
& A=\frac{1}{2}(16 \mathrm{~cm})(13.8 \mathrm{~cm}) \\
& A=\frac{1}{2}\left(220.8 \mathrm{~cm}^{2}\right) \\
& A=110.4 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 2 - Continued

The three lateral faces are all congruent. So we can find the area of one triangle and then triple the amount.

$$
\begin{aligned}
& A=\frac{1}{2} \mathrm{bh} \\
& A=\frac{1}{2}(16 \mathrm{~cm})(20 \mathrm{~cm}) \\
& A=\frac{1}{2}\left(320 \mathrm{~cm}^{2}\right) \\
& A=160 \mathrm{~cm}^{2}
\end{aligned}
$$

So the area of all three would be $160 \mathrm{~cm}^{2} \times 3=480 \mathrm{~cm}^{2}$.

Example 2 - Continued

Now, we will put all the areas of the faces together.

$$
110.4 \mathrm{~cm}^{2}+480 \mathrm{~cm}^{2}=590.4 \mathrm{~cm}^{2}
$$

The total surface area of this triangular pyramid is $590.4 \mathrm{~cm}^{2}$.

