Special Constructions for Lines and Angles

Part 2

1 - Bisecting a Line Segment with a Compass

The final construction that we will do is **bisecting a line segment with a compass.**

When a line is **bisected** it means that we have divided it into **two equal parts**.

The **midpoint** of a line is the **point where** the line has been bisected.

For example, a bisected line looks like this:

1 - Continued

Now, let's see how we can bisect a line with a compass.

Locate the midpoint of \overline{MN} by constructing a right bisector.

First, we will make an arc with a compass from **point M** that is more than half way to **point N**.

1 - Continued

Next, we will make an arc with a compass from **point N** that is the same radius as the arc made from **point M**.

Finally, draw a line through the two places where the arcs meet. This line is the **right bisector of** \overline{MN} . The **midpoint of** \overline{MN} is where the **right bisector** passes through \overline{MN} .

1 - Continued

Point B is the midpoint of \overline{MN}

Line AC is the right bisector of \overline{MN}

Classwork

 Given ray BA, construct ∠ABC = 140° using a protractor.

2. Construct a line that is parallel to \overline{PQ} and that passes through the point R.

Classwork Continued

3. Determine the shortest distance from point P to \overline{QR}

Classwork Continued

4. Locate the midpoint of \overline{AB} by constructing a right bisector.

