Special Construction For Lines and Angles

This section will focus on the following Geometric Constructions:

- Constructing an angle with a protractor
- Bisecting an angle with a compass
- Constructing parallel lines with a set square and a ruler
- Constructing perpendicular lines with a set square
- Bisecting a line segment with a compass

Part 1: Bisecting an Angle (dividing an Angle into 2 parts)

The following steps will describe how to bisect $\angle A B C=60^{\circ}$ given below.

Part 1: Continued

First, we make an arc with our compass from point B that passes through $\overline{A B}$ and $\overline{B C}$

Next, we make an arc with our compass from point D.

Part 1: Continued

Now, we make the same arc with our compass from point \mathbf{E}. Be sure to keep the same arc length.

Finally, draw a line that connects point \mathbf{B} to the place that the two arcs meet (point F).

Ray BF is the angle bisector of $\angle \mathrm{ABC}$.
Since $\angle \mathrm{ABC}=60^{\circ}, \angle \mathrm{ABF}=30^{\circ}$ and $\angle \mathrm{FBC}=$ 30°

Part 2: Constructing Parallel Lines

To construct parallel lines, we will need to use a set square. A set square looks like this:

If we want to construct a line that is parallel to $\overline{A B}$ that passes through point C in the diagram below, we will do the following steps.

Part 2: Continued

First, we will place the longest side of the set square along $\overline{A B}$ and a ruler on one of the other sides of the set square as shown below.

Part 2: Continued

Next, we slide the set square along the edge of the ruler until the longest side of the set square is touching point C. Draw a line through point \mathbf{C} along the longest side of the set square.

Part 2: Continued

Finally, remove your geometry set tools and label the parallel lines.

Part 3: Perpendicular Lines

Remember - 2 lines are perpendicular if they intersect at a 90 degree angle!

For example, in the diagram below, $\overline{A B}$ is perpendicular to $\overline{C D}$. Using symbols, we can write $\overline{A B} \perp \overline{C D}$.

It is also worth noting that the shortest
distance from the point \mathbf{C} to $\overline{A B}$ is along $\overline{C D}$.

Part 3 - Continued

Homework:
Page 140-141 \# 1-5

Place the set square on $\overline{A B}$ as shown in the diagram below. Then, draw a line that passes through point \mathbf{C} and $\overline{A B}$ along the set square.

The new line that has been drawn through point \mathbf{C} is perpendicular to $\overline{A B}$.

