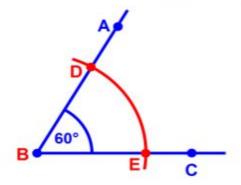
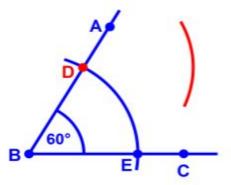

Special Construction For Lines and Angles

This section will focus on the following Geometric Constructions:

- Constructing an angle with a protractor
 - Bisecting an angle with a compass
 - Constructing parallel lines with a set square and a ruler
 - Constructing perpendicular lines with a set square
 - Bisecting a line segment with a compass

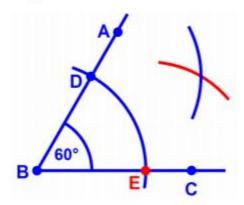

Part 1: Bisecting an Angle (dividing an Angle into 2 parts)

The following steps will describe how to bisect $\angle ABC = 60^{\circ}$ given below.

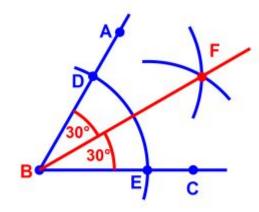


Part 1: Continued

First, we make an arc with our compass from **point B** that passes through \overline{AB} and \overline{BC}



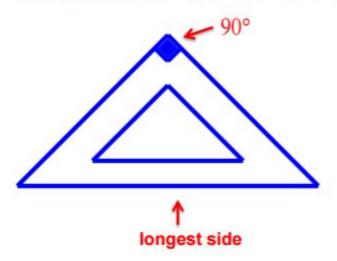
Next, we make an arc with our compass from **point D**.



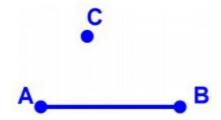
Part 1: Continued

Now, we make the same arc with our compass from **point E**. Be sure to keep the same arc length.

Finally, draw a line that connects **point B** to the place that the two arcs meet (**point F**).

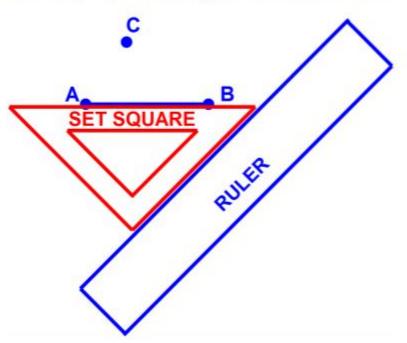


Ray BF is the angle bisector of \angle ABC.

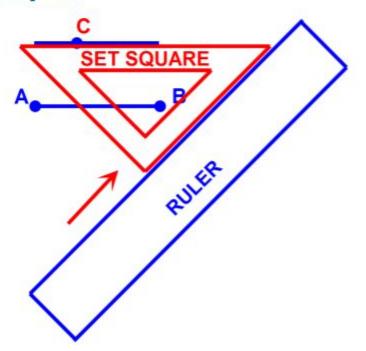

Since
$$\angle ABC = 60^{\circ}$$
, $\angle ABF = 30^{\circ}$ and $\angle FBC = 30^{\circ}$

Part 2: Constructing Parallel Lines

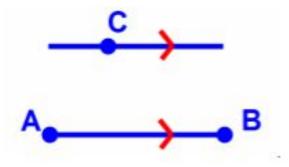
To construct parallel lines, we will need to use a **set square**. A set square looks like this:



If we want to construct a line that is parallel to \overline{AB} that passes through point C in the diagram below, we will do the following steps.

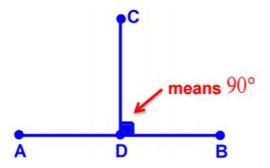

Part 2: Continued

First, we will place the longest side of the **set square** along \overline{AB} and a **ruler** on one of the other sides of the set square as shown below.


Part 2: Continued

Next, we slide the **set square** along the edge of the **ruler** until the longest side of the **set square** is touching **point C**. Draw a line through **point C** along the longest side of the **set square**.

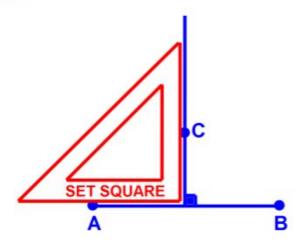
Part 2: Continued


Finally, remove your geometry set tools and label the parallel lines.

Part 3: Perpendicular Lines

Remember - 2 lines are perpendicular if they intersect at a 90 degree angle!

For example, in the diagram below, \overline{AB} is **perpendicular** to \overline{CD} . Using symbols, we can write $\overline{AB} \perp \overline{CD}$.


It is also worth noting that the shortest distance from the **point C** to \overline{AB} is along \overline{CD} .

Part 3 - Continued

Homework:

Page 140 - 141 # 1 - 5

Place the **set square** on \overline{AB} as shown in the diagram below. Then, draw a line that passes through **point C** and \overline{AB} along the **set square**.

The new line that has been drawn through **point C** is perpendicular to \overline{AB} .