Rotational Symmetry

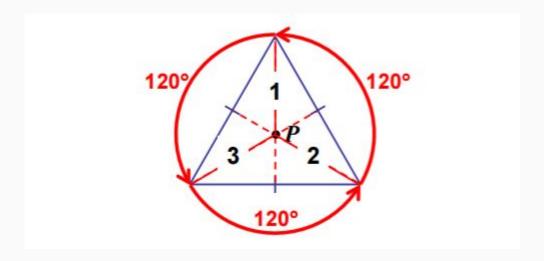
A shape has rotational symmetry when it looks the same after a rotation.

For a shape to have rotational symmetry, the rotation must be 180° or less.

Magnitude of Rotation

This is the minimum amount of rotation needed for a shape to be mapped onto itself.

The point that is located in the middle, and that is the same distance from each vertex, is the center of symmetry


Calculating the Magnitude of Rotation

The point that is equidistant from each vertex is the **center of symmetry**.

- 1. Draw the lines of symmetry. Each line must connect to at least one vertex.
- 2. Label center point P.
- 3. How many lines, *n*, are there from *P* to the vertices?
- 4. Calculate the magnitude of rotation, $\frac{360^{\circ}}{n}$.

$$\frac{360^{\circ}}{4} = 90^{\circ}$$

Magnitude of Rotation

