REGULAR POLYGONS

REGULAR POLYGONS: DEFINITION

A polygon is regular if all of it's sides are congruent and all of it's interior angles are congruent.

Remember, congruent means identical in measurements.

So, what do we need?

- 1 Equal sides
- 2 Equal angles

EQUILATERAL TRIANGLE

3 congruent sides 3 congruent angles

4 congruent sides 4 congruent angles

REGULAR PENTAGON

5 congruent sides 5 congruent angles

REGULAR HEXAGON

6 congruent sides 6 congruent angles

REGULAR OCTAGON

8 congruent sides 8 congruent angles

REGULAR DECAGON

TRIANGLES

Recall:

All the angles of a triangle, add up to a total of 180°

POLYGONS - INTERIOR ANGLES

The sum of the interior angles of a Regular Polygon vary from Polygon to Polygon, however there is a general rule that we can use:

$$S = (n - 2) (180^{\circ})$$

where

- S = sum of the interior angles
- n = the number of sides

EXAMPLE: PENTAGON (N = 5)

HEXAGON(N = 6)

REGULAR POLYGONS: INTERIOR ANGLES

We can also determine the measure of each interior angle by dividing the sum S by the number of sides n:

$$\angle A = \frac{S}{n}$$
 or $\angle A = \frac{(n-2)(180^\circ)}{n}$

where

 $\angle A$ = the measure of each interior angle in a regular polygon

- S = is the sum of all angles
- n = the number of sides

EXAMPLE: EQUILATERAL TRIANGLES

Equilateral Triangle : n = 3 $\angle A = \frac{(n-2)(180^\circ)}{(180^\circ)}$ $\angle A = \frac{(3-2)(180^\circ)}{}$ 3 $\angle A = \frac{(1)(180^\circ)}{(180^\circ)}$ 3 $\angle A = \frac{180^{\circ}}{2}$ 3 $\angle A = 60^{\circ}$

Example: Square

Square: $\mathbf{n} = \mathbf{4}$

$$\angle A = \frac{(n-2)(180^\circ)}{n}$$
$$\angle A = \frac{(4-2)(180^\circ)}{4}$$
$$\angle A = \frac{(2)(180^\circ)}{4}$$
$$\angle A = \frac{360^\circ}{4}$$
$$\angle A = 90^\circ$$

SUMMARY

Let's summarize the results in a table.

Regular Polygon	Number of Sides	Sum of the Interior Angles	Measure of one Interior Angle
Equilateral Triangle	3	180°	60°
Square	4	360°	90°
Regular Pentagon	5	540°	108°
Regular Hexagon	6	720°	120°
Regular Octagon	8	1080°	135°
Regular Decagon	10	1440°	144°
All Regular Polygons	n	$S = (n-2)(180^\circ)$	$\angle A = \frac{(n-2)(180^\circ)}{n}$

.

HOMEWORK:

Math 3000 : pages 151 - 152 #1, 2, 3, 4(abc) Pages 153 #5 - 10