Regular polygons

ReGULAR PolyGons: Definition

A polygon is regular if all of it's sides are congruent and all of it's interior angles are congruent.

Remember, congruent means identical in measurements.
So, what do we need?
1 - Equal sides
2 - Equal angles

Equilateral Triangle

3 congruent sides
3 congruent angles

SQuare

4 congruent sides
4 congruent angles

Regular Pentagon

5 congruent sides 5 congruent angles

Regular HExagon

6 congruent sides
6 congruent angles

Regular Octagon

8 congruent sides 8 congruent angles

Regular Decagon

10 congruent sides
10 congruent angles

Triangles

Recall:
All the angles of a triangle, add up to a total of 180°

Polygons - Interior Angles

The sum of the interior angles of a Regular Polygon vary from Polygon to Polygon, however there is a general rule that we can use:
$S=(n-2)\left(180^{\circ}\right)$
where
S = sum of the interior angles
$\mathrm{n}=$ the number of sides

Example: Pentagon ($\mathrm{N}=5$)

Pentagon: $\mathbf{n}=\mathbf{5}$

HEXAGON (N = 6)

Hexagon: $\mathbf{n}=\mathbf{6}$

$$
\left\{\begin{array}{l}
S=(n-2)\left(180^{\circ}\right) \\
S=(6-2)\left(180^{\circ}\right) \\
S=(4)\left(180^{\circ}\right) \\
S=720^{\circ}
\end{array}\right.
$$

ReGular Polygons: Interior Angles

We can also determine the measure of each interior angle by dividing the sum S by the number of sides n :

$$
\angle A=\frac{S}{n} \quad \text { or } \quad \angle A=\frac{(n-2)\left(180^{\circ}\right)}{n}
$$

where
$\angle A=$ the measure of each interior angle in a regular polygon
$S=$ is the sum of all angles
$\mathrm{n}=$ the number of sides

ExaMPLE: Equilateral Triangles

Equilateral Triangle : $\mathbf{n = 3}$

$$
\begin{aligned}
& \angle A=\frac{(n-2)\left(180^{\circ}\right)}{n} \\
& \angle A=\frac{(3-2)\left(180^{\circ}\right)}{3} \\
& \angle A=\frac{(1)\left(180^{\circ}\right)}{3} \\
& \angle A=\frac{180^{\circ}}{3}
\end{aligned}
$$

$$
\angle A=60^{\circ}
$$

EXAMPPE: SQuare

Square: $\mathbf{n = 4}$

$$
\begin{aligned}
& \angle A=\frac{(n-2)\left(180^{\circ}\right)}{n} \\
& \angle A=\frac{(4-2)\left(180^{\circ}\right)}{4} \\
& \angle A=\frac{(2)\left(180^{\circ}\right)}{4} \\
& \angle A=\frac{360^{\circ}}{4} \\
& \angle A=90^{\circ}
\end{aligned}
$$

SuMMARY

Let's summarize the results in a table.

Regular Polygon	Number of Sides	Sum of the Interior Angles	Measure of one Interior Angle
Equilateral Triangle	$\mathbf{3}$	180°	60°
Square	$\mathbf{4}$	360°	90°
Regular Pentagon	$\mathbf{5}$	540°	108°
Regular Hexagon	$\mathbf{6}$	720°	120°
Regular Octagon	$\mathbf{8}$	1080°	135°
Regular Decagon	$\mathbf{1 0}$	1440°	144°
All Regular Polygons	\mathbf{n}	$\boldsymbol{S}=(\boldsymbol{n - 2})\left(\mathbf{1 8 0} 0^{\circ}\right)$	$\angle \boldsymbol{A}=\frac{(\boldsymbol{n - 2)}(\mathbf{1 8 0})}{\boldsymbol{n}}$

HOMEWORK:
Math 3000 : pages 151 - 152 \#1, 2, 3, 4(abc)

$$
\text { Pages } 153 \text { \#5 - } 10
$$

