One DIMENSIONAL CONVERSIONS \&

PERIMETER

One Dimensional Conversions

Let's do a quick recap on One Dimensional Conversions:

$$
\overbrace{\text { kilometer }}^{\mathrm{km}} \overbrace{\text { hectometer }}^{\mathrm{hm}} \overbrace{\text { decameter }}^{\mathrm{dam}} \overbrace{\text { decimeter }}^{\mathrm{m}} \overbrace{\text { centimeter }}^{\mathrm{dm}}
$$

One DIMENSIONAL CONVESSIONs

Each unit of length is separated by a factor of 10

This means that $1 \mathrm{~m}=\mathbf{1 0 d m}$.

And $10 \mathrm{~cm}=1 \mathrm{dm}$.
$\mathrm{km} \quad \mathrm{hm}$ dam $\mathrm{m} \quad \mathrm{dm} \quad \mathrm{cm} \quad \mathrm{mm}$

One DImensional Conversions

If we move $\mathbf{2}$ places along the units list
\square
or
$1 \mathrm{~m}=100 \mathrm{~cm}$

One Dimensional Conversions

For example, $\mathbf{1 . 2 5 7 ~ d m}=$? cm

Since we are converting $\mathbf{d m}$ to $\mathbf{c m}$, we need to multiply $\mathbf{1 . 2 5 7}$ by 10 .

$$
1.257 \times 10=\mathbf{1 2 . 5 7}
$$

So, $1.257 \mathrm{dm}=\mathbf{1 2 . 5 7} \mathbf{~ c m}$

Perimeter of Regular Polygons

In order to calculate the perimeter of any of the regular polygons, we will use the formula:

$$
P=(n)(b)
$$

" P " is the Perimeter
" n " is the number of sides
" b " is the side length
Let's try an example using this formula.

Example: Perimeter of Regular Decagon

$$
\begin{aligned}
& P=(n)(b) \\
& P=(10)(3 \mathrm{~cm}) \\
& P=30 \mathrm{~cm}
\end{aligned}
$$

Example 2: Find X

The perimeter of the regular pentagon given below is 35 cm . Determine the value of \mathbf{x}.

First, we state the information that we know about the regular pentagon.

$$
\mathrm{P}=35 \mathrm{~cm} \quad \mathrm{n}=5 \quad \mathrm{~b}=\mathrm{x}
$$

Next, we state the formula to calculate the perimeter (P) of a regular pentagon.

$$
P=(n)(b)
$$

Example 2: Continued

Finally, we calculate the value of \mathbf{x}.

$$
\begin{aligned}
P & =(n)(b) \\
35 \mathrm{~cm} & =(5)(x) \\
\frac{35 \mathrm{~cm}}{5} & =\frac{(5)(x)}{5} \\
7 \mathrm{~cm} & =\frac{(5)(x)}{8} \\
x & =7 \mathrm{~cm}
\end{aligned}
$$

So, all of the sides of the regular pentagon measure $\mathbf{7 c m}$ in length.

HOMEWORK

Math 3000: Pages 157 - 158 \#1,2,3,5,6,7,9
Assignment on MHS

