IMPORTANT QUADRILATERALS

WHAT IS A QUADRILATERAL?

First, it is important to note that all quadrilaterals have **4 sides**.

Also, the four interior angles of a quadrilateral always add up to 360°

CONVEX QUADRILATERAL

A **convex quadrilateral** always has all four interior angles measuring **less than** 180°. A convex quadrilateral looks like this:

CONCAVE QUADRILATERAL

A concave quadrilateral has one angle that measures more than 180°. A concave quadrilateral looks like this:

SQUARE

The first special quadrilateral that we will look at is the **square**.

All squares have

- · 4 congruent (equal in length) sides
- 4 congruent angles (all of the interior angles measure 90°)

RECTANGLE

All rectangles have

- 4 congruent interior angles (90°)
- · congruent opposing sides

$$m\overline{AB} = m\overline{CD}$$
 and $m\overline{BC} = m\overline{AD}$

RHOMBUS

All rhombus' have

parallel opposing sides

$$\overline{AB} \parallel \overline{CD}$$
 and $\overline{BC} \parallel \overline{AD}$

4 congruent sides

$$\overline{mAB} = \overline{mBC} = \overline{mCD} = \overline{mAD}$$

opposing angles that are equal

$$\angle A = \angle C$$
 and $\angle B = \angle D$

two pairs of supplementary angles

$$\angle A + \angle B = 180^{\circ}$$
 and $\angle C + \angle D = 180^{\circ}$

or

$$\angle A + \angle D = 180^{\circ}$$
 and $\angle B + \angle C = 180^{\circ}$

PARALLELOGRAM

All parallelograms have

parallel opposing sides

$$\overline{AB} \parallel \overline{CD}$$
 and $\overline{BC} \parallel \overline{AD}$

congruent sides

$$m\overline{AB} = m\overline{CD}$$
 and $m\overline{BC} = m\overline{AD}$

opposing angles that are equal

$$\angle A = \angle C$$
 and $\angle B = \angle D$

two pairs of supplementary angles

$$\angle A + \angle B = 180^{\circ}$$
 and $\angle C + \angle D = 180^{\circ}$

or

$$\angle A + \angle D = 180^{\circ}$$
 and $\angle B + \angle C = 180^{\circ}$

TRAPEZOID

All trapezoids have

· one pair of parallel opposing sides

$$\overline{BC} \parallel \overline{AD}$$

· one pair of supplementary angles

$$\angle A + \angle B = 180^{\circ}$$
 and $\angle C + \angle D = 180^{\circ}$

RIGHT TRAPEZOID

The right trapezoid looks like this:

The right trapezoid has all the same characteristics as other trapezoids, but in addition to those it has two interior angles that measures 90°.

$$\angle A = 90^{\circ}$$
 and $\angle B = 90^{\circ}$

ISOSCELES TRAPEZOID

The **isosceles trapezoid** has the following characteristics:

one pair of parallel opposing sides

$$\overline{BC} \parallel \overline{AD}$$

one pair of congruent opposing sides

$$m\overline{AB} = m\overline{CD}$$

two pairs of congruent angles

$$\angle A = \angle D$$
 and $\angle B = \angle C$

Also,

$$\angle A + \angle B = 180^{\circ}$$
 and $\angle C + \angle D = 180^{\circ}$

or

$$\angle A + \angle C = 180^{\circ}$$
 and $\angle B + \angle D = 180^{\circ}$