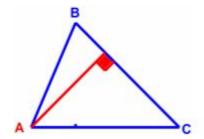

Important Lines for Triangles

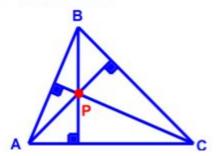
Altitude of a Triangle

The **altitude** is the **height** of a triangle.


For example, in $\triangle ABC$ below, we can make as **altitude** from **vertex B** to \overline{AC} . Notice that the **altitude** is **perpendicular** to \overline{AC} .

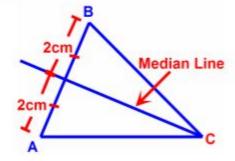
Always use your set square to make an altitude.

We can make an altitude from any of the three vertices of $\triangle ABC$


In the same triangle, the altitude from vertex A would look like this:

Orthocentre of a Triangle

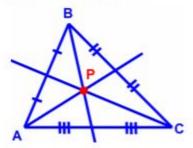
If we draw an altitude from all three vertices, the point at which the three altitudes meet is called the **orthocenter**.



Point P is the **orthocenter** of $\triangle ABC$.

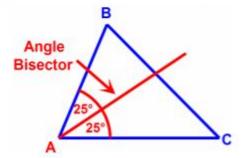
Median Line of a Triangle

A **median** is a line from a vertex to the **midpoint** of the side that is opposite from that vertex.


For example, in $\triangle ABC$ below, we can make a **median** from **vertex C** to \overline{AB} .

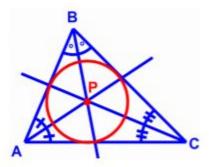
Center of Gravity

If we draw a median from all three vertices, the point at which the three medians meet is called the **center of gravity**.


Point P is the center of gravity of $\triangle ABC$.

Angle Bisector

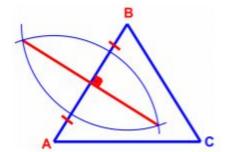
Remember that an **angle bisector splits an angle into two equal angles**.


For example, the angle bisector at vertex A in \triangle ABC looks like this:

Inscribed Circle

If we draw the angle bisector from all three vertices, the point at which the three angle bisectors meet is the **center** where we can draw an **inscribed circle** in ΔABC

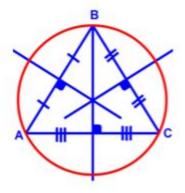
An inscribed circle is a circle inside the triangle that touches the inside of all three edges.



Point P is the center of the inscribed circle in Use a compass to draw the circle.

Right Bisector

In $\triangle ABC$, the **right bisector** of \overline{AB} looks like this:



Circumscribed Circle

If we draw the right bisectors of all three sides, the point at which the three right bisectors meet is the center of where we can draw a circumscribed circle around

A circumscribed circle is a circle outside the triangle that passes through all three vertices.

A circumscribed circle looks like this:

