EXPONENTS AND SQUARE ROOTS

BASES, EXPONENTS & POWERS

In math, we have a short method of writing an expression when the same factor is repeated.

Instead of writing $3 \times 3 \times 3 \times 3 = 3^4$

BASES, EXPONENTS & POWERS

When we have 3^4

3 is the base

4 is the exponent

and

 3^4 is the power

BASES, EXPONENTS & POWERS

Special names are given to exponents when they are either two or three:

 7^2 can be read as seven squared

 5^3 can be read as five cubed

BASES, EXPONENTS AND POWERS

Exponential Form	Word Form	Factored Form	Standard Form (Answer)
7 ³	seven cubed	7 x 7 x 7	343
4 ²	four squared	4 x 4	14
2 ⁵	two to the fifth power	2 x 2 x 2 x 2 x 2	32
6 ⁰	six to the zero power	1	1

The idea of a square root comes from a 2D representation of

How do we find the area of a square? Side x side

Length x width

Example: Find the Area

Area = length x width

Area = $5 \text{ cm} \times 5 \text{ cm}$

Area = 5^2

Area = 25 cm^2

Area = $a \times a$ Area = a^2

a

What if we were working backwards? Example:

The area is 25cm^2 , find the length of each side.

We know that each side is 5. This leads to the idea of the square root. What is a square root? The square root of a number is a value when multiplied by itself, gives the number.

Example:

 $4 \times 4 = 16$, so the square root of 16 is 4.

We use this symbol:

 $\sqrt{16} = 4$

CLASSWORK

Evaluate:

- **1.** 2⁷
- 3⁴
 4⁵
- 3. 4^5 4. 2^4
- 5. $\sqrt{25}$ 6. $\sqrt{36}$
- 7. √49
- 8. √81