EXPONENTS AND SQuare Roots

Bases, Exponents \& Powers

In math, we have a short method of writing an expression when the same factor is repeated.

Instead of writing $3 \times 3 \times 3 \times 3=3^{4}$

BASES, EXPONENTS \& POWERS

When we have 3^{4}

3 is the base
4 is the exponent
and
3^{4} is the power

Bases, Exponents \& Powers

Special names are given to exponents when they are either two or three:
7^{2} can be read as seven squared
5^{3} can be read as five cubed

BaSES, Exponents and Powers

Exponential Form	Word Form	Factored Form	Standard Form (Answer)
7^{3}	seven cubed	$7 \times 7 \times 7$	343
4^{2}	four squared	4×4	14
2^{5}	two to the fifth power	$2 \times 2 \times 2 \times 2 \times 2$	32
6^{0}	six to the zero power	1	1

Square Roots

The idea of a square root comes from a 2D representation of
a square

How do we find the area of a square? Side x side

Square Roots

Example: Find the Area

Area $=$ length x width
Area $=5 \mathrm{~cm} \times 5 \mathrm{~cm}$
Area $=5^{2}$

$5 \times 5=25$

$$
5^{2}=25
$$

$$
\text { Area }=25 \mathrm{~cm}^{2}
$$

Square Roots

$$
\text { Area }=a \times a
$$

Area $=a^{2}$

Square Roots

What if we were working backwards? Example:

$5 \times 5=25$ $5^{2}=25$

We know that each side is 5 .
This leads to the idea of the square root.
What is a square root? The square root of a number is a value when multiplied by itself, gives the number.

Square Roots

Example:
$4 \times 4=16$, so the square root of 16 is 4.
We use this symbol:
$\sqrt{ } 16=4$

CLasswork

Evaluate:

$\begin{array}{ll}\text { 1. } & 2^{7} \\ \text { 2. } & 3^{4} \\ \text { 3. } & 4^{5} \\ \text { 4. } & 2^{4}\end{array}$
5. $\sqrt{ } 25$
6. $\sqrt{ } 36$
7. $\sqrt{ } 49$
8. $\sqrt{ } 81$

