Dilation.

	is a	transformation that
proportionally	or	a figure. c

-A'B'C' is an _____ or ABC
-Dilation is defined by the **center of**

-Dilation is defined by the **center of dilation (point O)**, and the **scale factor k**.

-We can calculate the scale factor:

$$m\overline{OA} = 2cm$$
 $m\overline{OA'} = 4cm$
 $m\overline{OB} = 2cm$ $m\overline{OB'} = 4cm$
 $m\overline{OC} = 3cm$ $m\overline{OC'} = 6cm$

 \rightarrow A _____ of 2, means that sides of triangle A'B'C' is ____ as long as the sides to triangle ABC.

 \rightarrow The expression we use to denote dilation is h(O,K)

-For dilations with a _____ scale factor, the image will always be on the ____ side of the centre of dilation as the original figure.

HOW TO CONSTRUCT THE IMAGE OF A DILATION

$$m\overline{OA} = 4cm$$

 $m\overline{OB} = 6.8cm$
 $m\overline{OC} = 4.4cm$

Draw the image of the triangle shown here by the dilation $h(O, \frac{1}{2})$

-Step 1: READ THE INSTRUCTIONS:

-Step 2: extend dotted lines starting from **point O** and passing through **point A**.

-Step 3: Locate the vertices of the image:

- -Step 4: Locate A', B', and C' from **point O** and construct the image A'B'C'.
- -Step 5: List all measure and confirm that they are ½ of the original distances.

Example 1:

Draw the image of the polygon below by the dilation $h(O, \frac{1}{2})$.

Example 2:

Given the dilation below, determine the position of the centre of dilation.

