
Name:					
Group:					

SIMILAR FIGURES

We will learn how to determine if two figures are similar or not.

→ For two polygons to be *similar* they must have corresponding *angles* that are *congruent* AND the corresponding sides must be *proportional*.

Example 1: We're going to show how triangle ABC is SIMILAR(~) to DEF.

FIRST: Notice how we name the

triangles...It means that

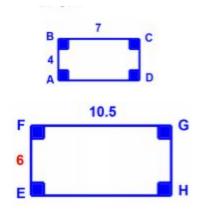
$$< A = < D$$

This is showing us that the *corresponding* angles are *congruent*.

SECOND: We use the corresponding

letters to determine the *corresponding* sides. AND check if corresponding sides are *proportional*:

$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{BC}}{m\overline{EF}} = \frac{m\overline{CA}}{m\overline{FD}}$$


$$\frac{10}{6} = \frac{20}{12} = \frac{25}{15}$$

$$1.\overline{66} = 1.\overline{66} = 1.\overline{66}$$

NOTE: for *triangles* only *one* of the conditions needs to be met; that is, for triangles, their corresponding angles must be *congruent* **OR** their corresponding sides must be *proportional*.

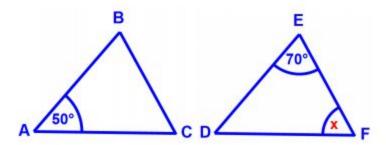
→ If we know that two polygons are similar, we can find unknown measurements in the given polygons.

Example 2: Determine the missing measurement x in the rectangles below where rectangle ABCD \sim rectangle EFGH:

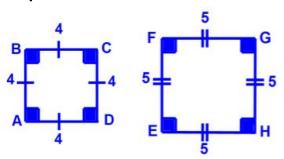
FIRST: We identify which sides are proportional to each other by setting up the proportions:

$$\frac{m\overline{AB}}{m\overline{EF}} = \frac{m\overline{BC}}{m\overline{FG}}$$

$$\frac{4}{x} = \frac{7}{10.5}$$


$$(4)(10.5) = (x)(7)$$

$$42 = (x)(7)$$


$$\frac{42}{7} = x$$

$$x = 6$$

Example 3: Solve for the missing angle x.

Example 4: Determine whether the following shapes are similar and explain why:

$$\frac{m\overline{AB}}{m\overline{EF}} = \frac{m\overline{BC}}{m\overline{FG}} = \frac{m\overline{CD}}{m\overline{GH}} = \frac{m\overline{DA}}{m\overline{HE}}$$

$$\frac{4}{5} = \frac{4}{5} = \frac{4}{5} = \frac{4}{5}$$