Prime & Composite Numbers and GCF

Prime Numbers

A prime number only has two factors - the number 1 and itself.

Examples: 2, 3, 5, 7, 11

All of these numbers ONLY have two factors

Composite Numbers

A composite number is the opposite of a prime number.

What do we think a composite number is? Let's come up with some examples.

• The number 1 is special! It's considered to be neither prime or composite

Prime Factorization of a Number

"Prime Factorization" is finding **which prime numbers** multiply together to make the original number.

Example 1: What are the prime factors of 12?

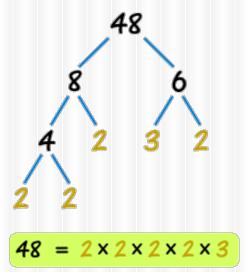
It is best to start working from the smallest prime number, which is 2, so let's check:

$$12 \div 2 = 6$$

Yes, it divided evenly by 2. We have taken the first step! But, is 6 a prime number? No, so we need to divide again.

Let's try 2 again:

$$6 \div 2 = 3$$


Yes, that worked also. And 3 is a prime number, so we have the answer:

$$12 = 2 \times 2 \times 3$$

As you can see, every factor is a prime number, so the answer must be right.

Factor Tree Method

A "Factor Tree" can help: find **any factors** of the number, then the factors of those numbers, etc, until we can't factor any more.

The bottom row of numbers must all be prime numbers when we complete our factoring.

Greatest Common Factor (GCF)


Step #1 - Find all the Prime Factors of each number (using a factor tree)

Step #2 - Circle the prime numbers that each number has in common

Step #3 - Multiply those primes together

GCF

Example: What is the GCF of 12 & 16?

GCF

Example #2: What is the GCF between 36 and 54?