Arc Length of a Circle

The arc length of a circle is proportional to the degree measure of the central angle intercepting this arc.

Arc length $A B(\overparen{A B})$ is red.

The circumference is blue.
Point O is the center of the circle in black. The central angle for $(\overparen{A B})$ is $\angle A O B$ There are 360° in a full circle.

The circumference (the perimeter of the circle) is the distance around a full circle.

The length of $\overparen{A B}(\boldsymbol{m} \overparen{A B})$ is proportional to the central angle $(\boldsymbol{m} \angle A O B)$ as the circumference is proportional to 360°

As a formula,

$$
\frac{m \overparen{A B}}{C}=\frac{m \angle A O B}{360^{\circ}}
$$

Example 1

If the circumference of the following circle is 25.12 cm , calculate $\boldsymbol{m} \overparen{\boldsymbol{A B}}$.

First, we state the information given in the question.

$$
\begin{aligned}
C & =\mathbf{2 5 . 1 2} \mathrm{cm} \\
m \angle A O B & =180^{\circ}
\end{aligned}
$$

Example 1 - Continued

$$
\begin{aligned}
\frac{m \overparen{A B}}{C} & =\frac{m \angle A O B}{360^{\circ}} \\
\frac{m \overparen{A B}}{25.12 \mathrm{~cm}} & =\frac{180^{\circ}}{360^{\circ}} \\
\frac{m \overparen{A B}}{25.12 \mathrm{~cm}} & \therefore \frac{180^{\circ}}{360^{\circ}} \\
(360)(m \overparen{A B}) & =(180)(25.12 \mathrm{~cm}) \\
(360)(m \overparen{A B}) & =(180)(25.12 \mathrm{~cm}) \\
m \overparen{A B} & =\frac{(180)(25.12 \mathrm{~cm})}{360} \\
m \overparen{A B} & =\frac{4521.6 \mathrm{~cm}}{360} \\
m \overparen{A B} & =12.56 \mathrm{~cm}
\end{aligned}
$$

Note that $\boldsymbol{m} \overparen{A B}=12.56 \mathrm{~cm}$ is half of the circumference $C=25.12 \mathrm{~cm}$

Example 2

If the circumference of the circle below is 43.96 cm , calculate $\boldsymbol{m} \boldsymbol{A B}$ (shown in red).

$$
\begin{array}{rr}
\frac{m \overparen{A B}}{C}=\frac{m \angle A O B}{360^{\circ}} \\
\frac{m \overparen{A B}}{43.96 \mathrm{~cm}}=\frac{130^{\circ}}{360^{\circ}} & (m \overparen{A B})(360)=(130)(43.96 \mathrm{~cm}) \\
\frac{m \overparen{A B}}{43.96 \mathrm{~cm}} \times 130^{\circ} 360^{\circ} & (m \overparen{A B})(360)=(130)(43.96 \mathrm{~cm}) \\
(m \overparen{A B})=\frac{(130)(43.96 \mathrm{~cm})}{360} \\
(\overparen{ } \overparen{(m B})=\frac{574.8 \mathrm{~cm}}{360} \\
m \overparen{A B}=15.87 \mathrm{~cm}
\end{array}
$$

Example 3

If $\boldsymbol{m} \overparen{A B}=5.75 \mathrm{~cm}$ in the circle below,
what is the circumference of this circle?

$$
m \overparen{A B}=5.75 \mathrm{~cm} \quad m \angle A O B=50^{\circ}
$$

Example 3 - Continued

$$
\begin{aligned}
\frac{m \overparen{A B}}{C} & =\frac{m \angle A O B}{360^{\circ}} \\
\frac{5.75 \mathrm{~cm}}{C} & =\frac{50^{\circ}}{360^{\circ}} \\
\frac{5.75 \mathrm{~cm}}{C} & =\frac{50^{\circ}}{360^{\circ}} \\
(50)(C) & =(360)(5.75 \mathrm{~cm}) \\
C & =\frac{(360)(5.75 \mathrm{~cm})}{50} \\
C & =\frac{2070 \mathrm{~cm}}{50} \\
C & =41.4 \mathrm{~cm}
\end{aligned}
$$

Homework:

MATH 3000 PAGE 173 \#5, 7

$$
\text { PAGE } 174 \text { \#8, } 9
$$

ASSIGNMENT ON MHS

